GH3::GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem.
نویسندگان
چکیده
GH3 genes related to the auxin-inducible Glycine max (L.) Merr. GmGH3 gene encode enzymes that conjugate amino acids to auxin. To investigate the role of GH3 enzymes in stress responses and normal wood development, Populus x canescens (Ait.) was transformed with the promoter-reporter construct GH3::GUS containing a GH3 promoter and the 5' UTR from soybean. beta-Glucuronidase (GUS) activity was present in the vascular tissues of leaves and in developing lateral roots and was inducible in silent tissues by external auxin application. A decrease in GUS activity from the stem apex to the bottom corresponded to decreases in auxin concentrations in these tissues. High auxin concentration and high GH3::GUS activity were present in the pith tissue, which may provide storage for auxin compounds. GH3 reporter was active in ray cells, paratracheal parenchyma cells, maturing vessels and in cells surrounding maturing phloem fibers but not in the cambium and immature phloem, despite high auxin concentrations in the latter tissues. However, the GH3 promoter in these tissues became active when the plants were exposed to abiotic stresses, like bending or salinity, causing changes in wood anatomy. We suggest that adjustment of the internal auxin balance in wood in response to environmental cues involves GH3 auxin conjugate synthases.
منابع مشابه
Cadmium interferes with auxin physiology and lignification in poplar
Cadmium (Cd) is a phytotoxic heavy metal that causes rapid growth reduction. To investigate if Cd interferes with the metabolism of auxin, a major growth hormone in plants, poplars (Populus × canescens) expressing a heterologous GH3::GUS reporter gene were exposed to 50 μM Cd in hydroponic solutions. Growth, photosynthetic performance, lignification, peroxidase activity, auxin concentration, an...
متن کاملEfficient Agrobacterium-Mediated Transformation and Analysis of Transgenic Plants in Hybrid Black Poplar (Populus × euromericana Dode Guinier)
Black poplar (Populus× euramericana Dode Guinier) is an industrially important tree with broad applications in wood and paper, biofuel and cellulose-based industries as well as plant breeding programs and soil phytoremediation approaches. Here, we have focused on development of direct shoot regeneration and Agrobacterium-mediated transformation protocols using the in vitro internodal stem tissu...
متن کاملFetal microchimerism in mouse caerulein-induced pancreatitis model
Objective(s): Fetal microchimerism is the persistence of allogeneic cell population that transfer from the fetus to the mother. The aim of this study was to evaluate the presence of fetal microchimerism in the pancreas of the mouse with acute pancreatitis (AP).Materials and Methods: In this experimental study, female wild-type mice were mated with male EGFP+. AP model was obtained by injection ...
متن کاملTissue- and Cell-Specific Cytokinin Activity in Populus × canescens Monitored by ARR5::GUS Reporter Lines in Summer and Winter
Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed be...
متن کاملAnalysis of cellulose synthase (CesA) promoter function in trees using Induced Somatic Sector Analysis (ISSA)
Detailed knowledge of the tissue specificity of gene expression is of central importance not only for our understanding of developmental processes during wood formation, but also is a prerequisite for the deliberate manipulation of xylogenesis candidate genes. Today, much of our knowledge about specific gene expression is based on annual model plants in part because perennial tree systems are o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tree physiology
دوره 28 9 شماره
صفحات -
تاریخ انتشار 2008